


# INSTRUÇÃO NORMATIVA (IN nº 003/DAT/CBMSC)

## **CARGA DE INCÊNDIO**

## **SUMÁRIO**

- 1 OBJETIVO
- 2 REFERÊNCIAS
- 3 TERMINOLOGIAS
- 4 INSTRUÇÕES NORMATIVAS
- 4.1 Instruções básicas
- 4.2 Instruções diversas
  - 4.2.1 Critérios de concepção
  - 4.2.2 Critérios de dimensionamento
- 4.3 Padrão mínimo de apresentação do projeto PMP

#### **ANEXOS**

- A Terminologia Específica
- B Poder Calorífico
- C Peso Específico
- D Coeficiente de Correção
- E Planilha para Cálculo da Carga de Incêndio

*Editada em: 18/09/2006*Ultima atualização: 00/00/0000

## INSTRUÇÃO NORMATIVA (IN nº 003/DAT/CBMSC)

## CARGA DE INCÊNDIO

Editada em: 18/09/2006

Última atualização: 00/00/0000

O Comando do Corpo de Bombeiros Militar do Estado de Santa Catarina - CBMSC, no uso das atribuições legais que lhe confere o artigo 2º do Anexo único, do Decreto nº 4909/94, e, considerando as necessidades de adequação e atualização de prescrições normativas, face evoluções tecnológicas e científicas, resolve editar a presente Instrução Normativa.

#### 1 OBJETIVO

1.1 Estabelecer e padronizar critérios de concepção, dimensionamento e padrão de apresentação dos cálculos da carga de incêndio, como fator de classificação do risco de incêndio, conforme a ocupação e uso específico, dos processos analisados e fiscalizados pelo Corpo de Bombeiros Militar do Estado de Santa Catarina – CBMSC.

## 2 REFERÊNCIAS

- 2.1 Normas de Segurança Contra Incêndio NSCI, editadas pelo Decreto 4909, de 18 de outubro de 1994;
- 2.2 NBR 14432/01 Exigências de resistência ao fogo de elementos construtivos de edificações Procedimento

#### 3 TERMINOLOGIAS

- 3.1 Terminologias específicas desta Instrução Normativa: consulte Anexo A;
- 3.2 Terminologias utilizadas na atividade em geral: consulte Instrução Normativa nº 002/DAT/CBMSC.

## 4 INSTRUÇÕES NORMATIVAS

## 4.1 Instruções básicas

- 4.1.1 Esta Instrução Normativa conterá todas as prescrições relativas ao assunto que aborda, quando assim autorizado pela edição do novo Decreto, que vier a substituir o Decreto nº 4909/94 que se encontra em processo de revisão.
- 4.1.2 Enquanto se aguarda a edição do novo Decreto, permanecem em vigor todas as prescrições do Capitulo IV e Anexo A, das NSCI/94;

### 4.2 Instruções diversas

### 4.2.1 Critérios de concepção:

Os previstos no Anexo A e Art. 27, das NSCI.

#### 4.2.2 Critérios de dimensionamento

- 4.2.2.1 Para determinação da carga de incêndio específica das edificações aplica-se à tabela constante do Anexo B Poder Calorífico;
- 4.2.2.2 Materiais não listados na tabela do Anexo B devem ter os valores do poder calorífico determinados por similaridade;
- 4.2.2.3 O levantamento da carga de incêndio específica deve ser realizado para toda a edificação e para setores específicos, quando for o caso (a critério do CBMSC);
- 4.2.2.4 Quando artigos incombustíveis tiverem acondicionamento combustível, os valores da carga de incêndio específica (qe) devem ser equiparados aos valores do acondicionamento;
- 4.2.2.5 Considerar que 1 Kg (um quilograma) de madeira equivale a 19,0 MJ = 4550 Kcal/Kg = 1 caloria equivale a 4,185 joules (J) e 1 BTU equivale a 252 calorias (cal);
- 4.2.2.6 O valor da carga de incêndio específica (qe), com definição no Anexo A, é expressa em Kcal/m² ou MJ/m²;
- 4.2.2.7 O valor da carga de incêndio ideal (qi), com definição no Anexo A, é expressa em Kg/m²;
- 4.2.2.8 Os valores da carga de incêndio específica e carga de incêndio ideal podem ser determinados pelo seguinte **ROTEIRO DE CÁLCULO:**
- a) Relação dos combustíveis encontrados na edificação, inclusive o mobiliário;
- b) Levantamento do peso estimado dos combustíveis;
- c) Relacionar os respectivos poderes caloríficos;
- d) Cálculo da quantidade de calor por combustível:

Onde:

Q = Quantidade de calor (kcal)

i = Unidade considerada (i = 1 até n)

k = Poder calorífico (kcal/kg)

p = Peso do combustível (kg)

e) Somatório das quantidades de calor:

$$\sum_{i=1}^{n} \sum_{i=1}^{n} ki \cdot pi \qquad (Kcal)$$

f) Cálculo da carga de incêndio específica:

$$qe = \frac{\sum Q}{S} \qquad (Kcal/m^2)$$

Onde:

g) Cálculo da carga de incêndio ideal (equivalente em madeira) – (Kg/m²)

$$qi = \underline{qe} \qquad (Kg/m^2)$$

$$Km$$

Onde:

h) Cálculo da carga de incêndio corrigida - quando os combustíveis estiverem armazenados ou guardados em depósitos:

$$\mathbf{q_c} = \mathbf{qi} \cdot \mathbf{\underline{m}}$$

Onde:

m = velocidade de combustão - m/s velocidade de combustão padrão - m/s

q<sub>c</sub> = carga de incêndio corrigida (kg/m²) m = coeficiente de correção (admensional) – Ver Anexo D

## 4.3 Padrão mínimo de apresentação do projeto - PMP

- 4.3.1 Apresentar planilha de dimensionamento, conforme padrão do Anexo E;
- 4.3.2 A planilha de dimensionamento deverá estar devidamente rubricada e assinada pelo responsável técnico;

Florianópolis, 18 de setembro de 2006.

## ADILSON ALCIDES DE OLIVEIRA Cel BM Cmt Geral do Corpo de Bombeiros Militar

**ANEXOS** 

- A Terminologia Específica
- **B** Poder Calorífico
- C Peso específico
- **D** Coeficiente de correção
- E Planilha para cálculo da carga de incêndio

## **ANEXO A (normativo)**

## Terminologia Específica

Para efeito desta Instrução Normativa, aplicam-se os termos seguintes:

Carga de incêndio: é a soma das energias caloríficas que poderiam ser liberadas pela combustão completa de todos os materiais combustíveis, em um espaço, inclusive os revestimentos das paredes divisórias, pisos e tetos.

Carga de incêndio específica – (qe): é o valor da carga de incêndio dividido pela área do piso considerado, expresso em MJ/m² ou Kg/m²;

Carga de incêndio ideal – (qi): por simplificação e/ou quantificação, algumas bibliografias admitem que a carga de incêndio seja formada totalmente por madeira e expressam a carga de incêndio como a massa de madeira equivalente à soma de todo material combustível do compartimento estudado por área de piso - (Kg de madeira equivalente/m²);

**Peso específico - (\rho):** peso (ou massa) por unidade de volume de um determinado material. Para uma aceleração da gravidade igual a 9,80665 m/s² (nível do mar) o Peso Específico é igual à Massa Específica ou Densidade, onde,  $P = \rho \times V$ , ou seja: P = Peso, em Kgf; V = Volume, em m³ e  $\rho = P$ eso específico (Densidade), em Kg/m³.

**Poder calorífico**: calor de combustão – é a quantidade de calor produzido por unidade de massa de um material no decurso completo da combustão;

Poder calorífico de referência da madeira = 4550 Kcal/Kg = 19 MJ/Kg;

**Potencial calorífico**: é a soma do poder calorífico de todos os materiais, componentes e objetos contidos numa determinada área da edificação, como resultado da combustão completa;

**Potencial calorífico unitário**: carga térmica ou carga de incêndio – é o potencial calorífico médio da massa de material combustível, por unidade de área do local.

## ANEXO B (informativo)

## PODER CALORÍFICO

| COMBUSTÍVEIS (SÓLIDOS E LÍQUIDOS)     | MJ/Kg   | Kcal/Kg      |
|---------------------------------------|---------|--------------|
| Acetona                               | 30      |              |
| Acrílico                              | 28      | 6700         |
| Açúcar                                | 17      | 4000         |
| Álcool                                | 40      | 9600         |
| Algodão                               | 18      | 4300         |
| Benzeno                               | 40      | 9600         |
| Borracha                              | 21 a 42 | 5000 a 10000 |
| Carpet                                | 21      | 5000         |
| Carvão                                | 36      | 8500         |
| Carvão de coque                       | 29      | 7000         |
| Celulose                              | 20      | 4700         |
| Coque                                 | 23 a 30 | 5500 a 7200  |
| Couro                                 | 19      | 4500         |
| Diesel                                | 43      | 10200        |
| Epóxi                                 | 344     | 8200         |
| Éter                                  | 37      | 8900         |
| Fibras                                | 19      | 4500         |
| Gasolina                              | 47      | 11150        |
| Gorduras e óleos vegetais             | 42      | 10000        |
| Graxa                                 | 41      | 9800         |
| Hidrogênio                            | 143     | 34100        |
| Hulha                                 | 21 a 34 | 5000 a 8100  |
| Jornal                                | 19      | 4450         |
| Látex                                 | 44      | 10500        |
| Lã                                    | 23      | 5500         |
| Lenha                                 | 10 a 15 | 2400 a 3700  |
| Livros                                | 16 a 17 | 3800 a 4000  |
| Madeira a 20°C e 65% unidade relativa | 17      | 4100         |
| Madeira seca                          | 21      | 5000         |
| Móveis de madeira                     | 17 a 21 | 4100 a 5000  |
| Nafta                                 | 42      | 10000        |
| Naftalina                             | 24      | 5800         |
| Óleos combustíveis                    | 42      | 10000        |
| Óleo de linhaça                       | 39      | 9300         |
| Palha                                 | 16      | 3800         |
| Papel (em pilhas)                     | 16 a 17 | 3800 a 4000  |
| Papel                                 | 17      | 4100         |
| Petróleo                              | 46      | 11000        |
| Plásticos                             | 31      | 7500         |
| Poliamidas                            | 31      | 7500         |
| Policarbonatos                        | 29      | 7000         |
| Poliester                             | 31      | 7400         |
| Poliestileno                          | 39      | 9240         |
| Polietileno                           | 44      | 10600        |
| Poliuretano                           | 23      | 5500         |
|                                       |         |              |

| COMBUSTÍVEIS (SÓLIDOS E LÍQUIDOS) | MJ/Kg   | Kcal/Kg             |
|-----------------------------------|---------|---------------------|
| PVC flexível                      | 23      | 5240                |
| PVC rígido                        | 18      | 4310                |
| Resina fenólica                   | 25      | 6000                |
| Revestimentos                     | 15      | 3500                |
| Roupas                            | 17 a 21 | 4000 a 5000         |
| Seda                              | 19      | 4600                |
| Trigo (a granel)                  | 15      | 3500                |
| Turba (ou Turfa)                  | 8 a 16  | 2000 a 4200         |
|                                   |         |                     |
| COMBUSTÍVEIS (GASES)              | MJ/Kg   | Kcal/m <sup>3</sup> |
| Acetileno                         |         | 5100                |
| Gás                               |         | 13600               |
| Gás de alto forno                 |         | 900                 |
| Gás de Gasogênio de hulha         |         | 1100                |
| Gás de Gasogênio de coque         |         | 900                 |
| Gás de Gasogênio de lenha         |         | 1200                |
| Gás natural                       |         | 8900 a 17800        |

#### Nota:

## (1) Poder Calorífico da madeira padrão:

- 1 Kg de madeira equivale a 4550 Kcal
- 1 Kg de madeira equivale a 4550000 Cal
- -1 Cal = 4,185 joules
- 1 Kg de madeira equivale a  $4550000 \times 4{,}185 = 18414000 \text{ joules}$
- -1 mega = 1000000
- 1 Kg de madeira equivale a 18414000 ÷ 1000000 = 18,414 MJ Arredondando, temos: 1 Kg de madeira equivale a 19 MJ
- (2) Então, para a transformação do valor do poder calorífico de Kcal/Kg para MJ/Kg, ou vice-versa, procede-se da seguinte maneira:
- PC = 19 MJ/Kg x  $1000000 \div 4{,}185 \div 1000 = 4550$  Kcal/Kg; ou,
- PC =  $4550 \text{ Kcal/kg} \times 1000 \times 4{,}185 \div 1000000 = 19 \text{ MJ/Kg}.$

# ANEXO C (Informativo)

## Peso específico

| TIPO DE COMBUSTÍVEL         | Peso Específico (ρ) |
|-----------------------------|---------------------|
| Petróleo                    | 800                 |
| Resina                      | 1070                |
| Vinho                       | 1031                |
| Naftalina                   | 1150                |
| Óleo de algodão             | 920                 |
| Óleo de linhaça             | 940                 |
| Óleo de oliva               | 920                 |
| Óleo de rícino              | 970                 |
| Parafina                    | 890                 |
| Níquel                      | 8525                |
| Gasolina (15°)              | 825                 |
| Glicerina                   | 1280                |
| Cloro                       | 1330                |
| Benzina (0°)                | 900                 |
| Cola                        | 1200                |
| Azeite                      | 890,5               |
| Asfalto                     | 1215                |
| Alcatrão                    | 1200                |
| Álcool etílico (15°)        | 790                 |
| Álcool metílico (4°)        | 810                 |
| Acetona (20°)               | 790                 |
| Ácido clorídrico (15°, 40%) | 1190                |

# ANEXO D (Informativo)

## Coeficiente de correção

| TABELA COM VALORES DO COEFICIENTE DE CORREÇÃO     |                                              |                                    |                                                 |  |  |
|---------------------------------------------------|----------------------------------------------|------------------------------------|-------------------------------------------------|--|--|
|                                                   | COEFICIENTE "m"                              |                                    |                                                 |  |  |
| MATERIAIS                                         | SEGUNDO C                                    | OO O ESTADO DOS MATERIAIS          |                                                 |  |  |
|                                                   | SOLTOS                                       | EMPILHADOS                         | COMPACTOS                                       |  |  |
|                                                   | PEQUENA<br>DENSIDADE<br>GRANDE<br>SUPERFÍCIE | DENSIDADE E<br>SUPERFÍCIE<br>MÉDIA | GRANDE<br>DENSIDADE E<br>SUPERFÍCIE<br>REDUZIDA |  |  |
| ALGODÃO                                           | 1,2                                          | 0,8                                | 0,5                                             |  |  |
| BORRACHA, LINOLEO, PLÁSTICOS                      | 1,3                                          | 1,0                                | 0,7                                             |  |  |
| CEREAIS                                           | 1,0                                          | 0,8                                | 0,6                                             |  |  |
| COQUE, ANTTRACITA, HULHA SECA                     | -                                            | 0,3                                | 0,2                                             |  |  |
| PEDAÇOS DE MADEIRA, PAPEL                         | 1,7                                          | 1,2                                | 0,6                                             |  |  |
| FARINHA                                           | 0,9                                          | 0,7                                | 0,5                                             |  |  |
| PELE                                              | 1,0                                          | 0,8                                | 0,6                                             |  |  |
| FENO, PALHA                                       | 1,8                                          | 1,3                                | 0,9                                             |  |  |
| HULHA GORDUROSA, HULHA DE GÁS,<br>LIGNITO         | -                                            | 0,5                                | 0,4                                             |  |  |
| LÃ                                                | 0,8                                          | 0,6                                | 0,4                                             |  |  |
| MADEIRA E PRODUTOS DE MADEIRA,<br>PAPELÃO, MÓVEIS | 1,4                                          | 1,0                                | 0,5                                             |  |  |
| NITROCELUSOSE, CELULOIDE                          | 4,0                                          | 3,0                                | 2,0                                             |  |  |
| TURBA, TURBA, CARVÃO VEGETAL                      | 0,8                                          | 0,6                                | 0,5                                             |  |  |
| SEDA                                              | 1,4                                          | 0,9                                | 0,6                                             |  |  |
| MATERIAIS LÍQUIDOS E GASOSOS                      |                                              | COEFICIENTE " m "                  |                                                 |  |  |
| GASES COMBUSTÍVEIS                                | 1,5                                          |                                    |                                                 |  |  |
| LÍQUIDOS QUE PODEM ESQUENTAR ATÉ S<br>INFLAMAÇÃO  | 1,0                                          |                                    |                                                 |  |  |
| LÍQUIDOS COM PONTOS DE INFLAMAÇÃO 100°C           | 0,6                                          |                                    |                                                 |  |  |

## ANEXO E (Informativo) PLANILHA PARA CÁLCULO DA CARGA DE INCÊNDIO

| 1    | 2            | 3                                              | 4                                         | 5                                          | 6                   | 7                                    | 8                          | 9                       |
|------|--------------|------------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|--------------------------------------|----------------------------|-------------------------|
| Com  | ıbustíveis   |                                                | Quantidade de<br>calor por<br>combustível | Quantidade de calor total dos combustíveis | Área da<br>unidade  | Carga de Incêndio<br>específica      | Equivalência em<br>madeira | Carga de incêndio ideal |
| Tipo | Peso<br>(Kg) | Poder<br>calorífico<br>(kcal/kg) ou<br>(MJ/Kg) | Q = (kcal)<br>ou<br>Q = (MJ)              | ∑Q=(kcal)<br>ou<br>∑Q=(MJ)                 | S=(m <sup>2</sup> ) | $qe = (Kcal/m^2) ou$ $qe = (MJ/m^2)$ | (Kcal/kg)<br>ou<br>(MJ/Kg) | qi=(kg/m²)              |
|      |              |                                                |                                           |                                            |                     |                                      |                            |                         |
|      |              |                                                |                                           |                                            |                     |                                      |                            |                         |
|      |              |                                                |                                           |                                            |                     |                                      |                            |                         |
|      |              |                                                |                                           |                                            |                     |                                      |                            |                         |

### ROTEIRO DE CÁLCULO PRÁTICO:

Coluna 1 = Dado de projeto = tipos de combustíveis existentes na edificação;

Coluna 2 = Dado de projeto = peso de cada combustível relacionado na Coluna 1;

Coluna 3 = IN nº 003, Anexo B – Poder calorífico dos combustíveis;

Coluna  $4 = \text{Coluna } 2 \times \text{Coluna } 3$ ;

Coluna 5 = Somatório da Coluna 4 ( $\sum$  Coluna 4);

Coluna 6 = Dado de projeto = área da edificação ou compartimento;

Coluna 7 = Coluna  $5 \div$  Coluna 6;

Coluna 8 = Ver nota no rodapé, do Anexo E ou item 4, subitem 4.2.2.5, da IN nº 003;

Coluna  $9 = \text{Coluna } 7 \div \text{Coluna } 8$ .